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ABSTRACT 
This paper compares the techniques used to minimize the error due to the unbalanced forces that 

appear in the Newmark analysis of nonlinear structures. First, a brief review of the Newmark’s method and 
the error minimization techniques used in the Newmark analysis are given. The methods compared are the 
Newton-Raphson iteration, pseudo-force method and the unbalanced force correction method. Then, three 
SDOF and one three-DOF simplified bridge model, all consist of various nonlinear elements, are analyzed 
using El Centro earthquake ground acceleration data. The performances of each method are graphically 
compared for several time steps by defining a cumulative error index based on benchmark analyses, which 
are carried out with a very small time step. The nonlinear models considered herein are a bilinear element, a 
triliniear element, known as original Takeda model and a very sophisticated high damping rubber bearing 
element, which is governed by several differential equations. Based on the numerical simulations, 
cumulative error performances and time-effectiveness of each method are discussed. It is found that each 
method has its own merits and disadvantages mostly determined by the type of nonlinearity. 
Keywords: Newmark’s method, nonlinear analysis, pseudo-force, Newton-Raphson iteration, unbalanced 
force correction 

INTRODUCTION 
Newmark’s method (Newmark, 1959) converts differential equations of motion of a structure 

to a simpler form, which is solved algebraically and incrementally. Response quantities obtained 
solving this algebraic equation possess error for nonlinear systems since the nonlinear element 
forces used in this equation are different from those obtained using the nonlinear element models. 
The differences between these two forces are known as unbalanced forces. Generally, additional 
methods are employed to minimize either the error or the unbalanced forces. The most 
well-known method among them is Newton-Raphson iteration. However, Newton-Raphson 
iteration cannot be employed for systems with special devices or members, which cannot be 
modeled with a constant damping and a nonlinear force-displacement relation. For these systems, 
other methods such as pseudo-force method or unbalanced force correction method are employed. 
For systems with different type of nonlinearities, hybrid techniques can also be used. There are 
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several examples of the applications (Stricklin et al., 1971; Stricklin & Haisler, 1977; Nelson and 
Mak 1982; Molnar et al. 1976; Ohtori and Spencer, 1999; Nagarajaiah et al., 1991) and 
state-of-the-art papers (e.g. Subbaraj and Dokainish, 1989) of these methods in literature. It will 
be also useful to understand the performance characteristics and time efficiencies of these 
methods for different type of nonlinearities those frequently utilized in the civil engineering 
practice. 

This paper compares the techniques used to minimize the errors due to the unbalanced forces 
in Newmark’s method analyzing three SDOF systems and one three-DOF bridge model formed 
with three types of nonlinear elements. First, a review of the Newmark’s method and the methods 
used to minimize the error are given. These methods are Newton-Raphson iteration, pseudo-force 
method and unbalanced force correction method. Then, three SDOF systems and a three-DOF 
bridge model are defined. The nonlinear elements used in these systems are a bilinear model, a 
recently developed high damping rubber bearing model (Abé et al. 2004) and original a triliniear 
Takeda model (Takeda et al. 1970). Each system is analyzed by the aforementioned techniques 
for several time intervals using El Centro earthquake ground acceleration. An error index is 
defined based on the RMS error of the responses and forces, and benchmark analyses for each 
system. Finally, performances and time efficiencies of these methods are discussed for the 
systems considered. MATLAB (MATLAB 2001) is used as the programming language. 

A REVIEW OF THE ANALYSIS METHODS 
In this section, Newmark’s method and the error minimization techniques are summarized. 

Equation of motion of most of the structural systems is in the form of 

 s( ) ( ) ( )t t t+ + =Mx Cx F P  (1) 

where x is the displacement vector, M is the mass matrix, C is the damping matrix, Fs is the 
internal force vector, which is a function of the displacement, velocity and acceleration, P is the 
external force vector, and the dot designates the time derivative. Subtracting the equation of 
motion at time t from the equation of motion at time t t+ ∆ , one obtains the incremental 
formulation of the equation of motion as follows: 

 s
t t t t∆ + ∆ + ∆ = ∆M x C x F P  (2) 

where 1t t t+∆ = −x x x , 1t t t+∆ = −x x x , 1t t t+∆ = −x x x , 1
s s s
t t t+∆ = −F F F  and 1t t t+∆ = −P P P . 

Newmark’s method uses the following assumptions: 

 1 1[(1 ) ] ( )t t t tt tγ γ+ += + − ∆ + ∆x x x x   and  1 2 2 1[(0.5 )( ) ] ( )t t t t tt t tβ β+ += + ∆ + − ∆ + ∆x x x x x  (3) 

where the parameters β and γ define the variation of the acceleration over the time interval ∆t. 
Incremental velocity and acceleration can readily be obtained as 

 1
2

t t t tt
t

γ γ γ
β β β

 
∆ = ∆ − + ∆ − ∆  

x x x x   and  2
1 1 1

2
t t t t

tt β ββ
∆ = ∆ − −

∆∆
x x x x  (4) 

Substituting Eq. (4) into Eq. (2), one obtains the algebraic form of the equation of motion as 

 s
ˆt t t∆ + ∆ = ∆A x F P    where (5) 

 2
1

t t
γ
β β

= +
∆ ∆

A C M   and  1 1ˆ 1
2 2

t t t tt
t

γ γ
β β β β

    
∆ = ∆ + + + + ∆ −    ∆    

P P M C x M C x . (6) 
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Eq. (5) is algebraic but nonlinear since it can only be solved for t∆x  if s
t∆F   a function of 

t∆x , t∆x  and t∆x  is known. Therefore, Eq. (5) is solved approximately in two steps: 
Step 1: An assumption is made for s

t∆F , and t∆x is solved. The difference between the 
assumed s

t∆F  and the actual s
t∆F  is called unbalanced force. Assumptions can be made based 

on tangential stiffness or time derivative of internal force, or it can be s
t∆F  obtained in the 

previous time step, i.e., 1
s
t−∆F . 

Step 2: Additional techniques are utilized to minimize the unbalanced forces or the resulting 
error. There are two types of techniques utilized; iterative techniques such as Newton-Raphson 
iteration and pseudo-force method and single-step techniques such as unbalanced force correction 
method. 

Here, the abbreviations used throughout the review of these methods are given. , ,aif
s
t i∆F : 

Assumed incremental internal force at iteration i. Here, aif stands for assumed internal force. If 
an iterative method is not used, i can be omitted. ,t i∆x : Incremental displacement obtained from 
equation (5) using , ,aif

s
t i∆F . , ,eif

s
t i∆F : Incremental internal force vector obtained from element 

models using ,t i∆x , ,t i∆x  and ,t i∆x . Here, eif stands for estimated internal force. , ,euf
s
t i∆F : 

Estimated unbalanced force; the difference between , ,aif
s
t i∆F  and , ,eif

s
t i∆F . , ,auf

s
t i∆F : Actual 

unbalanced force; the difference between , ,aif
s
t i∆F  and s

t∆F . 

Assumptions Used in the First Step 

Assumption Based on the Tangential Stiffness (TS) 
Assume that  

 ,1,aif ,1 ,1
s
t t t

T∆ = ∆F K x  (7) 

where ,1t
TK  is the tangential stiffness matrix computed at the beginning of the time interval. 

Substituting Eq. (7) into Eq. (5), one obtains the incremental displacement and the estimated 
unbalanced force as  

 ,1 ,1 1ˆ ( )t t t
T

−∆ = ∆ +x P A K   and  ,1,euf ,1,aif ,1,eif ,1 ,1 ,1,eif
s s s s
t t t t t t

T= ∆ − ∆ = ∆ − ∆F F F K x F . (8) 

Assumption Based on the Internal Force Obtained in the Previous Time Step (IFPTS)  
Internal force is assumed to be equal to the internal force obtained in the previous time step: 

 ,1,aif 1
s s
t t−∆ = ∆F F  (9) 

The incremental displacement and the estimated unbalanced force become 

 ,1 1 1
s

ˆ( )t t t− −∆ = ∆ − ∆x P F A   and  ,1,euf 1 ,1,eif
s s s
t t t−= ∆ − ∆F F F . (10) 

Assumption Based on the Time Derivative (TD) of the Internal Force Vector. 
Assume that 

 ,1,aif s
s

t
t t

t
∂

∆ = ∆
∂
FF  (11) 

The incremental displacement and the estimated unbalanced force become 

 ,1 1sˆ
t

t t t
t

−∂
∆ = ∆ − ∆

∂

 
 
 

F
x P A   and  ,1,euf ,1,eifs

s s

t
t tt

t
∂

= ∆ − ∆
∂

F
F F  (12) 
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Error Minimization Techniques Used in the Second Step 

Newton-Raphson (NR) Iteration  
Unbalanced force , 1,euf

s
t n−F  is considered as an external force as 

 , , ,aif , 1,euf
s s

t n t n t n−∆ + ∆ =A x F F  (13) 

where ,t n∆x , , ,aif
s
t n∆F  are the displacement and internal force vectors due to , 1,euf

s
t n−F . Note 

that in the first step 1n =  is used (see Eqs. (7) to (12)). Eq. (13) is solved assuming the 
internal force vector is based on the tangential stiffness as 

 , ,aif ,1 ,
s
t n t t n

T∆ = ∆F K x . (14) 

The displacement due to , 1,euf
s
t n−F  becomes 

 , , ,euf ,1 1
s ( )t n t n t

T
−∆ = +x F A K . (15) 

, ,eif
s
t n∆F  is estimated using ,t n∆x , ,t n∆x  and ,t n∆x . The unbalanced force for iteration 2n ≥  

is estimated as 

 , ,euf , ,aif , ,eif
s s s
t n t n t n= ∆ − ∆F F F   or  , ,euf ,1 , , ,eif

s s
t n t t n t n

T= ∆ − ∆F K x F . (16) 

This iteration is carried out until an error criterion based on , ,euf
s
t nF  or ,t n∆x  is satisfied. Let N 

be the total iteration number. Final incremental displacement and incremental internal force 
vectors are 

 ,

1

N
t t j

j=

∆ = ∆∑x x   and  , ,eif
s s

1

N
t t j

j=

∆ = ∆∑F F  (17) 

If ,t n
TK is used during iteration n instead of ,1t

TK , this method is called modified Newton-Raphson 
iteration. 

Pseudo-force (PF) Method  
The internal force is assumed to be the estimated internal force obtained in the previous 

iteration. Note that for n = 2, internal force obtained in the first step is used. The displacement is 
computed as, 

 , ,aif , 1,eif
s s
t n t n−∆ = ∆F F   and  , , 1,eif 1

s
ˆ( )t n t t n− −∆ = ∆ − ∆x P F A . (18) 

, ,eif
s
t n∆F  is computed using ,t n∆x , ,t n∆x  and ,t n∆x . This iteration is carried out until an error 

criterion based on , ,euf
s
t nF  or ,t n∆x  is satisfied. Let N be the total number of iterations. The final 

incremental displacement and the internal force are ,t t N∆ = ∆x x  and , ,eif
s s
t t N∆ = ∆F F . 

Unbalanced Force Correction (UFC) Method 
This method is not an iterative method. The estimated unbalanced force obtained in the first 

step at time t, is applied to the system in the next time step, and an updated 1ˆ t+∆P  given by 
1 1 ,1,euf

s
ˆt t t+ +∆ = ∆ +P P F  is used instead of the original 1ˆ t+∆P . Therefore, 

 1 1 1,aif 1
s( )t t t+ + + −∆ = ∆ − ∆x P F A . (19) 

Here, 1,aif
s
t+∆F  can be one of the assumptions given in the first step. Also, note that iteration 

index i is omitted in this formulation. 
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Practical Applications 
In general, a structural system may consists of several types of nonlinear elements. In this 

case, an hybrid method can be used for analysis. To illustrate this concept, consider the following 
equation of motion: 

 s,1 s,2( ) ( ) ( )t t t+ + + =Mx Cx F F P  (20) 

where s,1F  and s,2 ( )F x  represent internal forces of two groups of elements. Let 

 s,1 1 s,1( )x= +F C x F x   and  s,1
xd

d
F
x

 is defined. (21) 

Here, 1C  is a constant damping matrix, and s,1
xF  is a displacement dependent function. Let 

s,2F  be a function that cannot be expressed in terms of a constant damping matrix and a 
displacement-dependent function as in Eq. (21). Moving s,2 ( )F x  to the right hand side of 
equation of motion and using incremental formulations, one obtains 

 s,1( )t x t∆ + = ∆A x F x P   where  s,2
ˆ ( )t t∆ = ∆ −P P F x . (22) 

and 1C  is included in matrix A . Noting that the first equation in (22) is in the form of Eq. (5), 
one can utilize NR iteration over s,1( )xF x , with an initial assumption based on the tangential 
stiffness, for a given t∆P . For t∆P , one can assume a s,2 ( )F x  based on its value in the 
previous time step and carry a PF iteration over s,2 ( )F x . Clearly, the final method is a hybrid 
technique that includes two nested iterations, where the outer is the PF iteration, and the inner is 
the NR iteration. 
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FIG 1. Schematic representation of the systems analyzed 

BILINEAR MODEL TAKEDA MODEL RUBBER BEARING  
FIG. 2. Representative behaviors of the models used in the systems 

NUMERICAL EXAMPLES 
In this section, three-SDOF and one three-DOF system (Fig. 1) are analyzed using the 

methods described above. The structural parameters for these systems are given in Table 1. The 
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rubber bearing element model is evaluated with a fourth order Runge-Kutta solver. 
Representative behaviors of the nonlinear elements are shown in Fig. 2. The methods used to 
analyze the systems are summarized in Table 2. For the PF and NR methods, only three iterations 
are carried out. The Newmark parameters are set to β = 1/6 and γ = 1/2. El Centro ground motion 
is used as the excitation. An error index is defined based on benchmark analyses. The benchmark 
analyses use NR iteration for SYS-A and NR and PF iterations for the other systems with 

0.0005t∆ = sec. For each of the benchmark system, five iterations are carried out. The error 
index is defined as 

 RMS RMS( ) RMS( ) RMS( ) RMS( )
bmbm bm bm

j ji i i i i i
bm bm bm bm
i i i j

F Fx x x x x x
I

x x x F

−− − −
=

  
 
  

 (23) 

where i corresponds to the DOF number and j corresponds to the nonlinear member number. 
Error index I, and the duration of the analysis for each system and method are plotted for several 
time intervals as shown in Fig. 3.  

Table 1. Summary of the structural parameters of the systems analyzed 
Mass Damping and Stiffness Rubber Bearing* 

Bilinear Takeda 

m = 20 tons 

m1 = 10 tons 

m2 = 15 tons 

m3 = 125 

tons 

k1 = 3160 ton-f/m 

k2 = 200 ton-f/m 

fy=100 ton-f 

c = 10 ton-f·sec/m 

k1 = 3000 ton-f/m 

k2 = 1000 ton-f/m 

k3 = 100 ton-f/m 

xy = 1 cm 

xc = 3 cm 

c = 10 ton-f·sec/m 

0

0

1

p
U

Y Y
U

γ= +
  
  

  
, max 1

0

0 0

q
U FS U

Y U U Y
α β= − −
    
    

    
 

2 2

k
F Uk F

η
= − , ( ) ( )( )1 1

1

0

n
F S F SY

F U U sign abs
U Y Y

− −
= −

 
 
 

 

1 2
F F F= +  where Y0 = 1.77 tons, U0 = 5.50 mm, α = 0.778, β = 
0.556, γ = 0.00102, k = 0.0197 ton/mm, n = 0.232, p = 2.71, q = 

0.099, η = 4.8832 ton.sec/mm and Umax = max(|U|). 
* This is an early version of a bearing model developed by the Bridge and Structure Laboratory of Civil Engineering Department of The University of Tokyo for a bearing of 

size 21(W)×21(L)×18.2(H) cm under an axial load of 40 kg-f/cm2
. Contact to Prof. Masato Abe at masato@bridge.t.u-tokyo.ac.jp for further information. 

Table 2. Summary of the methods compared 
Bilinear Element  Bilinear Element Rubber Bearing Method 

↓ 1st Step 2nd Step  
Method

↓ 1st Step 2ndStep 1st Step 2ndStep
PF IFPTS PF  NR-PF TS NR IFPTS PF 

UFC IFPTS UFC  NR-UFC TS NR IFPTS UFC 
SYS-A 

NR TS NR  PF IFPTS PF IFPTS PF 
     UFC IFPTS UFC IFPTS UFC 
     

SYS-C

UFC-TD TD UFC TD UFC 
Rubber Bearing        Method 

↓ 1st Step 2nd Step  Takeda Element Rubber Bearing 
PF IFPTS PF  

Method
↓ 1st Step 2ndStep 1st Step 2ndStep

UFC IFPTS UFC  NR-PF TS NR IFPTS PF 
PF-TD TD PF  PF IFPTS PF IFPTS PF 

SYS-B 

UFC-TD TD UFC  

SYS-D

UFC IFPTS UFC IFPTS UFC 

The followings are observed based on the results: 
SYS-A : All the methods have same performance while UFC method is more time-efficient. 
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SYS-B : For 0.005t∆ > sec, PF iteration have better performance than UFC. Using TD in the 1st 
step improves UFC method. 
SYS-C : For 0.005t∆ > sec, NR-PF and PF have best performance, and methods with UFC 
lowers the performance. Similar to SYS-B, using TD improves UFC. 
SYS-D : For 0.005t∆ > sec, NR and PF methods have better performance. 
All Systems: Methods with UFC has better time efficiency for all time steps. For 0.005t∆ < sec, 
all methods show same performance. 
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FIG. 3 Error of the responses with respect to the benchmark analysis and analysis 

durations for several time intervals. 
The methods described above have their own advantages and disadvantages. For example, 

NR iteration can only be applied to element forces those are in the form of (21) (e.g., piecewise 
linear element models). PF shows same error and time performance as NR for piecewise linear 
models, while it may not be time efficient for more complex models. For some problems where 
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MATLAB and Simulink (MATLAB, 2001) are used as software tools, it may be practical to 
employ UFC to avoid iterations. On the other hand, UFC method does not have a dynamic error 
checking scheme and may yield unpredictable results for very stiff (highly nonlinear) systems. 

CONCLUSIONS 
Several techniques used for Newmark’s analysis of nonlinear structure are investigated for 

several type of nonlinearities. The accuracy and time-efficiency of the methods are compared for 
several time steps. It is found that, PF method is both a practical and efficient solution for several 
type of nonlinearities. UFC method show better time-efficiency and have error performance 
similar to other methods for small time steps. However, it should be used carefully since it does 
not have an error-checking algorithm. 
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